Proteomic identification of specific glycosyltransferases functionally implicated for the biosynthesis of a targeted glyco-epitope.
نویسندگان
چکیده
Functional glycomic and glycoproteomic analyses often entail correlating the mapped glycosylation pattern of a cell against the activities of specific glycosyltransferases it expresses. While the mRNA transcripts can be readily mapped, the expression of a functional glycosyltransferase at protein level has defied most current proteomic approaches. To enable identification of these low abundant Golgi residing membrane bound proteins, we have developed a novel semigel-based shotgun proteomic workflow incorporating subcellular fractionation and one-step affinity enrichment of the detergent solubilized Golgi preparation on resins derivatized with nucleotide diphosphates. Applying the strategy to a colonic adenocarcinoma, Colo205, which is known to aberrantly synthesize abundant fucosylated extended type 1 chain, we first validated that beta3-galactosyltransferase 5 (beta3GalT5) is indeed the overexpressed beta3GalT. This and beta4GalT1 are the two galactosyltrasferases which were positively identified by proteomic analysis of the eluted fractions from uridine diphosphate (UDP)-affinity column. Substituting UDP with a guanidine diphosphate (GDP)-affinity column and monitoring the eluted fractions for enriched alpha3/4-fucosyltransferase (FucT) activities, we then identified FucT3 and FucT6 as the two major alpha3/4FucTs expressed in Colo205 at the protein level. Our proteomic analysis demonstrated that not all GDP-utilizing glycosyltransferases bind and are retained similarly by the GDP-affinity column and that specific activity assay along with optimization of binding and elution conditions is critical for successful identification of a particular subset of the targeted glycosyltransferases. Only OFUT1, a protein O-FucT, was additionally identified to coelute with the alpha3/4FucT activity, and not other GDP-fucose utilizing FucTs.
منابع مشابه
Production and Evaluation of Specific Single-Chain Antibodies against CTLA-4 for Cancer-Targeted Therapy
Background: Cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) molecules are expressed on T-cells and inhibit their function by inhibiting activation of subsequent T-cell molecular pathways. Blocking of CTLA-4 inhibits the growth of malignant tumor cells. Anti-CTLA-4 monoclonal antibodies activate the immune system against cancer. Due to several advantages of single-chain antibodi...
متن کاملGlycosyltransferases: cell surface remodeling and regulation of receptor tyrosine kinases-induced signaling*
The biosynthesis and degradation of glycoconjugates are catalyzed by glycosyltransferases and glycosidases, respectively, and the genes which encode glycosyltransferases and related proteins are referred to as `glyco-genes'. The expression of glycosyltransferases, the substrate speci®city of the enzymes and their subcellular localization represent key determinants in the biosynthesis of sugar c...
متن کاملIdentification of Mycobacterium tuberculosis CTL Epitopes Restricted by HLA-A*0201 in HHD Mice
CD8+ T cells are thought to play an important role in protective immunity to tuberculosis. The major histocompatibility complex class I subtype HLA-A*0201 is one of the most prevalent class I alleles, with a frequency of over 30% in most populations. HLA-A*0201 transgenic, H-2Db/mouse beta2-microglobulin double-knockout mice (HHD) which express human HLA-A*0201 but no mouse class I, was shown t...
متن کاملExtensin and Arabinogalactan-Protein Biosynthesis: Glycosyltransferases, Research Challenges, and Biosensors
Recent research, mostly in Arabidopsis thaliana, has led to the identification and characterization of the glycosyltransferases responsible for the biosynthesis of two of the most functionally important and abundant families of plant cell wall proteins, extensins, and arabinogalactan-proteins. Extensin glycosylation involves monogalactosylation of serine residues by O-α-serine galactosyltransfe...
متن کاملSelection and Evaluation of Specific Single Chain Antibodies against CD90, a Marker for Mesenchymal and Cancer Stem Cells
Background: CD90, a membrane-associated glycoprotein is a marker used to identify mesenchymal stem cells (MSCs). Recent studies have introduced CD90, which induces tumorigenic activity, as a cancer stem cell (CSC) marker in various malignancies. Blocking CD90 activity with anti-CD90 monoclonal antibodies enhanced anti-tumor effects. To date, highly specific antibody single-chain variable fragme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proteomics
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2008